Composition de Cryptographie - 2016/2017

Il est recommandé aux élèves de bien choisir l'ordre des questions selon leurs compétences et rapidités.

Si l'élève n'arrive pas à faire une démonstration, il peut considérer que le résultat de la démonstration est admis sur le reste l'exercice.

Le support de cours et les calculatrices sont permis

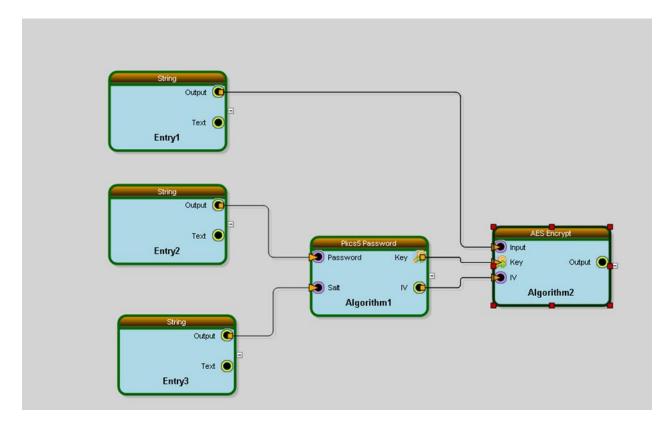
1. QCM

- 1. Le PKCS7 est la seule enveloppe de sécurité
 - a. Vrai
 - b. Faux
- Le PKCS7-Encrypted permet de chiffrer un document
 - a. avec une clé générée aléatoirement
 - b. avec une clé fixe chiffrée par la clé publique du destinataire
 - c. avec une clé fixe générée aléatoirement et transmise chiffrée par la clé publique du destinataire
 - d. avec une clé transmise en dehors du PKCS7-Encrypted
- Le PKCS7-Enveloped permet de chiffrer un document
 - a. avec une clé fixe chiffrée par la clé publique du destinataire
 - b. avec une clé fixe générée aléatoirement et transmise chiffrée par la clé publique du destinataire
 - c. avec une clé transmise en dehors du PKCS7-Enveloped
- 4. Dans un PKCS7-Enveloped le mode de padding du chiffrement est transmis comme paramètre dans l'enveloppe :
 - a. Vrai
 - b. Faux
- Le PKCS7-Signed and Enveloped est la seule méthode pour transmettre un document signé et chiffré :

 - a. Vrai b. Faux
- En cryptographie symétrique par blocs, que représente le "Vecteur IV" ?
 - a. Une extension de la clef secrète
 - b. Une initialisation du chaînage des blocs en mode CBC (Cipher Block Chaining)
 - c. Une initialisation du chaînage des blocs en mode ECB (Electronic Code Book)
 - d. La clef de confection du MAC de l'algorithme considéré
- 7. Une clé USB de stockage peut être utilisée comme Dispositif de sécurité logique
 - a. Vrai
 - b. Faux
- 8. Dans une carte à puce la clé privée est exportable
 - a. Vrai
 - b. Faux
 - c. Parfois
- 9. La Taille minimum d'une clé RSA sûre est de :
 - a. 1024 bits
 - b. 2048 bits
 - c. 512 bits
- 10. Parmi les fonctions hash suivants quelle est la fonction hash la plus sûre ?
 - a. SHA1
 - b. MD5

2. Questions Courtes (maximum 4 lignes)

- a) Quels sont les avantages et inconvénients des modes de padding ISO et ANSI ?
- b) Un message chiffré par AES/CBC a eu n blocs successifs altérés, quel est le nombre de blocs déchiffrés en erreur ?
- c) Rappeler rapidement le fonctionnement du mode CTR.
- d) Justifier pourquoi dans le cas d'utilisation d'un chiffrement en parallèle d'un texte par plusieurs machines, il faut choisir le mode CTR et non pas le CBC.


3. Parseur de l'OID

Soit la séquence DER d'un objet Object Identifier (OID) : T/L/V On supposera L sur un octet.

- a) Quelle est la valeur de T primitif?
- b) Quelle est la valeur minimale de L et sa valeur maximale ?
- c) Soit V un succession d'octets $V_0V_1...V_n$. Quelle est la valeur de n ?

4. Schéma cryptographique

Soit le schéma suivant :

Les variables des différents blocs sont les suivants :

Entry1:String

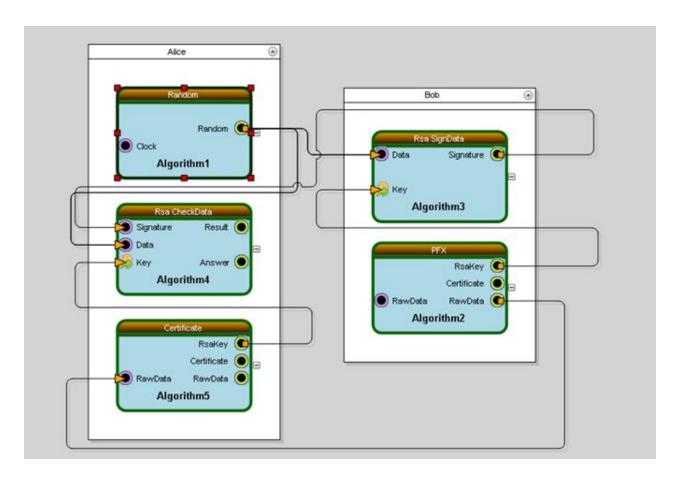
Output Values								
Text	alice au pays des merveilles							
Output	alice au pays des merveilles							
Entry2:String								
Output Values								
Text	c'est mon secret							
Output	c'est mon secret							

Entry3:String

Output Values	
Text	du sel et du poivre
Output	du sel et du poivre

Algorithm1:Pkcs5 Password

Output Values																
Key	09	5E	CA	1в	42	A1	Е3	21	AC	27	ΑE	94	2E	ВС	6E	0D
IV	49	35	80	85	3C	В2	9F	96	72	5F	2F	EE	7 F	BF	1E	15


Algorithm2:AES

Input Values																
Input	61	6C	69	63	65	20	61	75	20	70	61	79	73	20	64	65
r	73	20	6D	65	72	76	65	69	6C	6C	65	73				
Key	09	5E	CA	1в	42	A1	E3	21	AC	27	ΑE	94	2E	ВС	6E	0D
IV	49	35	80	85	3C	В2	9F	96	72	5F	2F	EE	7F	BF	1E	15
Output Values																
Output	15	65	74	F0	17	E8	8E	40	37	D7	68	40	D5	AΒ	ED	A2
	14	39	07	AB	EC	47	В4	23	7E	D6	74	ВА	34	5B	45	22

- a) Interpréter le schéma
- b) A quoi sert l'entrée Salt dans le module Algorithm1
- c) Cette opération est réalisée côté l'émetteur Alice, compléter le schéma pour implémenter l'opération inverse chez le récepteur Bob.
- d) Compléter le schéma dans le cas d'ajout de signature côté Alice et vérification de la signature côté Bob.

5. Schéma cryptographique 2

Soit le schéma suivant :

Les variables des différents blocs sont les suivants :

- a) Quel service de sécurité est implémenté par ce schéma ?
- b) Quelles sont les techniques utilisées ?
- c) Un module demande un mot de passe. Lequel ?
- d) Le module Rsa CheckData donne la sortie Answer suivante :

```
FF FF FF FF FF FF FF FF
                                          FF
FF FF FF
        FF FF FF FF FF FF FF FF
                                      FF
                                         FF FF
        FF
           FF FF FF FF
                       FF
                          FF
                             FF
                                FF
                                   FF
                                       FF
                                            FF
     FF
        FF
           FF FF FF
                    FF
                       FF
                          FF
                              FF
                                 FF
                                   FF
                                      FF
                                          FF
                                             FF
        FF
           FF FF
                 FF FF
                       FF
                          FF
                             FF
                                FF
                                      FF
        FF
           FF FF FF FF
                       FF
                           FF
                              FF
                                 FF FF
                                      FF
                                          FF
        FF FF FF FF FF
                       FF
                          FF FF FF FF
                                       FF
                                         FF
                                            FF
        FF
           FF FF
                 FF
                    FF
                       FF
                           FF
                              FF
                                 FF
                                    FF
                                       FF
           FF FF
                       FF
                          FF
                             FF
                                       FF
        FF
                 FF FF
                                FF
  FF FF
        FF
           FF FF FF FF
                       FF
                          FF
                              FF
                                 FF FF
                                       FF
                                          FF
                                             FF
        FF
           FF FF
                 FF FF
                       FF
                          FF
                             FF
        FF
           FF FF FF FF
                       FF
                           FF
                             FF
                                 FF
                                   FF
                                      FF
        FF FF FF FF
                       FF
                          FF FF FF FF
FF FF FF FF FF FF FF
                          FF FF FF 00 30 21 30
  06 05 2B 0E 03 02 1A 05 00 04 14 36 F3 26 82
09
CO 23 95 58 18 4D 39 57 FA A3 88 F8 00 A4 51 1D
```

 Sans interpréter la valeur de l'OID quelle fonction hash a été utilisée (Md5, Sha1, Sha256, Sha512) et pourquoi?